Machine learning in Perl, Part3: Deep Convolutional Generative Adversarial network
Hello all,
Quick update on the status of AI::MXNet.
Recently MXNet proper got a cool addition,
new imperative PyTorch like interface called Gluon. If interested please read about it at Gluon home page.
I am pleased to announce that Perl (as of AI::MXNet 1.1) is joining a happy family of Lua and Python that are able to express ML ideas with Torch like elegance and fluidity.
Today's code is from Perl examples, and if you would like to understand it deeper please read the details at Gluon DCGAN example.
#!/usr/bin/perl
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.use strict;
use warnings;
use AI::MXNet qw(mx);
use AI::MXNet::Gluon qw(gluon);
use AI::MXNet::AutoGrad qw(autograd);
use AI::MXNet::Gluon::NN qw(nn);
use AI::MXNet::Base;
use Getopt::Long qw(HelpMessage);
use Time::HiRes qw(time);
use PDL::IO::Pic;my $batch_size = 64;
my $nz = 100;
my $ngf = 64;
my $ndf = 64;
my $nepoch = 25;
my $lr =0.0002;
my $beta1 = 0.5;
my $nc = 3;
## change to my $ctx = mx->cpu(); if needed
my $ctx = mx->gpu();my $train_data = gluon->data->DataLoader(
gluon->data->vision->MNIST('./data', train=>1,
transform => \&transformer),
batch_size=>$batch_size, shuffle=>1,
last_batch=>'discard'
);my $val_data = gluon->data->DataLoader(
gluon->data->vision->MNIST('./data', train=>0,
transform=> \&transformer),
batch_size=>$batch_size, shuffle=>0
);sub transformer
{
my ($data, $label) = @_;
# resize to 64x64
$data = mx->image->imresize($data, 64, 64);
$data = $data->reshape([1, 64, 64]);
# normalize to [-1, 1]
$data = $data->astype('float32')/128 - 1;
# if image is greyscale, repeat 3 times to get RGB image.
if($data->shape->[0] == 1)
{
$data = mx->nd->tile($data, [3, 1, 1]);
}
return ($data, $label);
}sub visualize
{
my ($data, $fake, $iter) = @_;
mkdir "data_images";
mkdir "data_images/$iter";
mkdir "fake_images";
mkdir "fake_images/$iter";
for my $i (0..$batch_size-1)
{
my $d = ((pdl_shuffle($data->at($i)->at(0)->aspdl,
[reverse(0..63)]) + 1)*128)->byte;
my $f = ((pdl_shuffle($fake->at($i)->at(0)->aspdl,
[reverse(0..63)]) + 1)*128)->byte;
$d->wpic("data_images/$iter/$i.jpg");
$f->wpic("fake_images/$iter/$i.jpg");
}
}# build the generator
my $netG = nn->Sequential();
$netG->name_scope(sub {
# input is Z, going into a convolution
$netG->add(nn->Conv2DTranspose($ngf * 8, 4, 1, 0, use_bias=>0));
$netG->add(nn->BatchNorm());
$netG->add(nn->Activation('relu'));
# state size-> ($ngf*8) x 4 x 4
$netG->add(nn->Conv2DTranspose($ngf * 4, 4, 2, 1, use_bias=>0));
$netG->add(nn->BatchNorm());
$netG->add(nn->Activation('relu'));
# state size-> ($ngf*8) x 8 x 8
$netG->add(nn->Conv2DTranspose($ngf * 2, 4, 2, 1, use_bias=>0));
$netG->add(nn->BatchNorm());
$netG->add(nn->Activation('relu'));
# state size-> ($ngf*8) x 16 x 16
$netG->add(nn->Conv2DTranspose($ngf, 4, 2, 1, use_bias=>0));
$netG->add(nn->BatchNorm());
$netG->add(nn->Activation('relu'));
# state size-> ($ngf*8) x 32 x 32
$netG->add(nn->Conv2DTranspose($nc, 4, 2, 1, use_bias=>0));
$netG->add(nn->Activation('tanh'));
# state size-> (nc) x 64 x 64
});# build the discriminator
my $netD = nn->Sequential();
$netD->name_scope(sub {
# input is (nc) x 64 x 64
$netD->add(nn->Conv2D($ndf, 4, 2, 1, use_bias=>0));
$netD->add(nn->LeakyReLU(0.2));
# state size-> ($ndf) x 32 x 32
$netD->add(nn->Conv2D($ndf * 2, 4, 2, 1, use_bias=>0));
$netD->add(nn->BatchNorm());
$netD->add(nn->LeakyReLU(0.2));
# state size-> ($ndf) x 16 x 16
$netD->add(nn->Conv2D($ndf * 4, 4, 2, 1, use_bias=>0));
$netD->add(nn->BatchNorm());
$netD->add(nn->LeakyReLU(0.2));
# state size-> ($ndf) x 8 x 8
$netD->add(nn->Conv2D($ndf * 8, 4, 2, 1, use_bias=>0));
$netD->add(nn->BatchNorm());
$netD->add(nn->LeakyReLU(0.2));
# state size-> ($ndf) x 4 x 4
$netD->add(nn->Conv2D(2, 4, 1, 0, use_bias=>0));
});# loss
my $loss = gluon->loss->SoftmaxCrossEntropyLoss();# initialize the generator and the discriminator
$netG->initialize(mx->init->Normal(0.02), ctx=>$ctx);
$netD->initialize(mx->init->Normal(0.02), ctx=>$ctx);# trainer for the generator and the discriminator
my $trainerG = gluon->Trainer(
$netG->collect_params(),
'adam',
{learning_rate => $lr, beta1 => $beta1}
);
my $trainerD = gluon->Trainer(
$netD->collect_params(),
'adam',
{learning_rate => $lr, beta1 => $beta1}
);
# ============printing==============
my $real_label = mx->nd->ones([$batch_size], ctx=>$ctx);
my $fake_label = mx->nd->zeros([$batch_size], ctx=>$ctx);my $metric = mx->metric->Accuracy();
print "Training...\n";my $iter = 0;
for my $epoch (0..$nepoch-1)
{
my $tic = time;
my $btic = time;
my $fake; my $data;
while(defined(my $d = <$train_data>))
{
$data = $d->[0];
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real_t
$data = $data->as_in_context($ctx);
my $noise = mx->nd->random->normal(0, 1,
shape=>[$batch_size, $nz, 1, 1], ctx=>$ctx);my ($output, $errD, $errG);
autograd->record(sub {
$output = $netD->($data);
$output = $output->reshape([$batch_size, 2]);
my $errD_real = $loss->($output, $real_label);
$metric->update([$real_label], [$output]);$fake = $netG->($noise);
$output = $netD->($fake->detach());
$output = $output->reshape([$batch_size, 2]);
my $errD_fake = $loss->($output, $fake_label);
$errD = $errD_real + $errD_fake;
$errD->backward();
$metric->update([$fake_label], [$output]);
});
$trainerD->step($batch_size);############################
# (2) Update G network: maximize log(D(G(z)))
###########################
autograd->record(sub {
$output = $netD->($fake);
$output = $output->reshape([-1, 2]);
$errG = $loss->($output, $real_label);
$errG->backward();
});$trainerG->step($batch_size);
my ($name, $acc) = $metric->get();
if(not $iter%100)
{
AI::MXNet::Logging->info("speed: %.2f samples/s",
$batch_size / (time-$btic));
AI::MXNet::Logging->info(
"discriminator loss = %f,
generator loss = %f,
binary training acc = %f at iter %d epoch %d",
mx->nd->mean($errD)->asscalar(),
mx->nd->mean($errG)->asscalar(),
$acc, $iter, $epoch
);
}
$iter++;
$btic = time;
}
my ($name, $acc) = $metric->get();
$metric->reset();
visualize($data, $fake, $epoch);
AI::MXNet::Logging->info(
"\nbinary training acc at epoch %d: %s=%f",
$epoch, $name, $acc);
AI::MXNet::Logging->info("time: %f", time - $tic);
}
Just WoW ! thanks for such a big work.
Without knowing anything about MXNet etc, it might be a good idea to consider using Log::Any for logging instead of rolling your own logger (as used in the last two lines of your code sample)
Hi domm,
Your contribution is welcome on github :-) On serious note though, I try to keep non core dependencies of this project to absolute necessities only.